High concentrations of radon in homes were discovered by chance in 1985 after the stringent radiation testing conducted at a new nuclear power plant revealed that Stanley Watras, a construction engineer at the plant, was contaminated by radioactive substances even though the reactor had never been fueled.[85] Typical domestic exposures are of approximately 100 Bq/m3 (2.7 pCi/L) indoors. Some level of radon will be found in all buildings. Radon mostly enters a building directly from the soil through the lowest level in the building that is in contact with the ground. High levels of radon in the water supply can also increase indoor radon air levels. Typical entry points of radon into buildings are cracks in solid foundations and walls, construction joints, gaps in suspended floors and around service pipes, cavities inside walls, and the water supply.[8][86] Radon concentrations in the same location may differ by a factor of two over a period of one hour. Also, the concentration in one room of a building may be significantly different from the concentration in an adjoining room.[2] The soil characteristics of the dwellings are the most important source of radon for the ground floor and higher concentration of indoor radon observed on lower floors. Most of the high radon concentrations have been reported from places near fault zones; hence the existence of a relation between the exhalation rate from faults and indoor radon concentrations is obvious.[86]
The distribution of radon concentrations will generally differ from room to room, and the readings are averaged according to regulatory protocols. Indoor radon concentration is usually assumed to follow a lognormal distribution on a given territory.[87] Thus, the geometric mean is generally used for estimating the "average" radon concentration in an area.[88]
The mean concentration ranges from less than 10 Bq/m3 to over 100 Bq/m3 in some European countries.[89] Typical geometric standard deviations found in studies range between 2 and 3, meaning (given the 68–95–99.7 rule) that the radon concentration is expected to be more than a hundred times the mean concentration for 2% to 3% of the cases.
Some of the highest radon hazard in the US is found in Iowa and in the Appalachian Mountain areas in southeastern Pennsylvania.[90] Iowa has the highest average radon concentrations in the US due to significant glaciation that ground the granitic rocks from the Canadian Shield and deposited it as soils making up the rich Iowa farmland.[91] Many cities within the state, such as Iowa City, have passed requirements for radon-resistant construction in new homes. The second highest readings in Ireland were found in office buildings in the Irish town of Mallow, County Cork, prompting local fears regarding lung cancer.[92]
In a few locations, uranium tailings have been used for landfills and were subsequently built upon, resulting in possible increased exposure to radon.[2]
Since radon is a colorless, odorless gas, the only way to know how much is present in the air or water is to perform tests. In the US, radon test kits are available to the public at retail stores, such as hardware stores, for home use, and testing is available through licensed professionals, who are often home inspectors. Efforts to reduce indoor radon levels are called radon mitigation. In the US, the EPA recommends all houses be tested for radon.